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Abstract

Long-running tasks typically involve processing highly similar information over time, which poses a signifi-
cant challenge for Large Language Models (LLMs) in terms of storage and retrieval. Retrieval-augmented
generation (RAG) systems, while effective in some scenarios, rely on static embedding spaces that do not
expand with new data, leading to poor data retrieval performance in long-term processes.
Continual learning and memory growth are essential for enabling LLMs to handle these evolving long-running
tasks. By expanding the embedding space, LLM agents can better differentiate between similar data points,
allowing for more accurate classification and retrieval. This work explores the mechanisms behind embedding
space expansion using autoencoders and progressive training, with the Critical Role Dataset (CRD3) as a
testbed. Learning how to expand embedding spaces is crucial for any long-running LLM application, whether
through RAG or continual learning systems.

1 Introduction

Large Language Models (LLMs), such as GPT-3 and
BERT, have demonstrated significant success across
various natural language processing (NLP) tasks. As
these models evolve into autonomous agents, par-
ticularly for long-running and continuous tasks, one
of the major challenges is embedding space manage-
ment. In such tasks, the model’s ability to continue
learning and expanding its understanding of new in-
formation is paramount.

1.1 Embedding Spaces in Long-
Running Tasks and Continual
Learning

When LLM agents engage in long-running tasks, they
often process highly similar information over time.

As new data points are added, if all of this informa-
tion is placed into the same limited embedding space,
the pre-trained model may struggle to differentiate
between the new and existing data. This is espe-
cially problematic when the differences between data
points are subtle or when new data closely resembles
previously processed information. Pre-trained mod-
els tend to collapse similar data into overlapping clus-
ters, making it difficult to extract meaningful insights
from new inputs.

This issue directly relates to how LLM agents store
information in a continual learning scenario. In a
non-continual learning model such as RAG, the em-
bedding space is static and does not evolve or expand
as new information is introduced. This limits the sys-
tems ability to handle highly similar data over time
because the embedding space becomes crowded, re-
sulting in errors during retrieval or decision-making
processes. In contrast, a continual learning agent
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(a) Autoencoder-Expanded Embeddings (b) Raw OpenAI Embeddings

Figure 1: Core Finding: Comparison of UMAP Projections. Raw OpenAI Embeddings vs Autoencoder-
Expanded Embeddings. This shows the significant improvement in embedding space structure after using
an autoencoder.

would need an expanding embedding space that mir-
rors how it stores and recalls information internally,
adapting dynamically as it encounters new data.

Expanding the embedding space becomes crucial not
only for distinguishing subtle differences in new in-
formation but also for supporting continual learning
in LLM agents. By allowing more granularity and
separation between data points, an LLM agent can
better discern the subtle distinctions that are crit-
ical in long-running tasks. This expanded space is
necessary for an agent to understand the variety of
actions it can take, even when confronted with near-
identical inputs in the same task environment. With-
out expanding the space, LLM agents or RAG sys-
tems would struggle with generalization and retrieval
as their knowledge base grows.

Therefore, the primary objective of this work is to
explore methods for expanding embedding spaces,
which is directly correlated with the capabilities
needed for continual learning in LLM agents. By fo-
cusing on highly similar text data, this research sheds
light on how embedding spaces can be managed to
support long-running processes without overwhelm-
ing the system with overlapping information.

2 Dataset

2.1 Critical Role Dataset (CRD3)

The Critical Role dataset (CRD3) was chosen as the
primary testbed for this study. This dataset is col-
lected from 159 episodes of the live-streamed show
Critical Role, where a group of players collaboratively
engage in a Dungeons and Dragons campaign. The
dataset consists of 398,682 turns of dialogue tran-
scribed into text and includes corresponding abstrac-
tive summaries collected from the Fandom wiki.

Critical Role is an ideal dataset for this study due to
its unique characteristics:

• It is a long-running task involving a continu-
ous narrative, making it an excellent candidate
for studying how embedding spaces behave with
long-term, highly similar data.

• The narratives and dialogues are generated
through spoken interaction, with frequent repe-
tition and similarity in phrasing, making it well-
suited for exploring the challenges of expanding
embedding spaces to avoid data overlap.

The linguistic uniqueness of this dataset lies in the
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collaboration between players, with multiple abstrac-
tive summaries and strong semantic ties between dia-
logues. This allows the study of how an evolving em-
bedding space can better differentiate between very
similar data points in a long-running task like Critical
Role.

3 Methodology

3.1 Embedding Models and Architec-
tures

The following key models and approaches were uti-
lized in this study:

• BERT Embeddings: Used as a baseline to
observe how traditional pre-trained embeddings
handle highly similar text data.

• Autoencoders: These were applied to expand
the embedding space by learning compressed
representations of the data and then reconstruct-
ing them, thereby dispersing overlapping data
points.

• Progressive Training: Progressive training
was employed to incrementally expand the
embedding space by gradually increasing the
dataset size and the number of training epochs.
The data was shuffled as the size increased, en-
suring better generalization and preventing over-
fitting.

3.2 Training Setup

The training setup consisted of two primary configu-
rations:

• Progressive Training Configuration: The
initial dataset size was set to 1024, with an incre-
ment ratio of 10% and up to 50 epochs. Learn-
ing rates and batch sizes were dynamically ad-
justed based on the models performance. Data
was shuffled as the size increased to prevent over-
fitting.

• Autoencoder Configuration: The initial
dataset size was set to 12,288, with an increment
ratio of 5% and a maximum of 5,000 epochs. The
autoencoder’s goal was to maximize the disper-
sion of data points in the embedding space while
maintaining the integrity of the learned repre-
sentations.

Key raw data collected during training:

• **Progressive Training (50 epochs)**: Train
Loss: 0.00026219, Val Loss: 0.00025741, Train
Similarity: 77.03%, Val Similarity: 77.52%

• **BERT Embedding Training Results (33
epochs)**: Train Loss: 0.00054292, Val Loss:
0.00052701, Train Similarity: 41.12%, Val Simi-
larity: 43.65%

• **Autoencoder Progressive Training Results**:
Data Size: 14,224, Train Loss: 0.00217701, Val
Loss: 0.00142907, Train Similarity: 2.01%, Val
Similarity: 3.93%

4 Experiments and Results

4.1 UMAP Projection of BERT Em-
beddings

The first figure presents the UMAP projection of
BERT embeddings from the pre-trained BERT model
applied to the Critical Role dataset (CRD3). The
figure reveals that the embeddings were clumped to-
gether, highlighting the inability of BERT to distin-
guish between highly similar data points.

4.2 PCA Projections of Raw vs
Autoencoder-Expanded Embed-
dings

This set of figures shows PCA projections of the
raw OpenAI embeddings and the embeddings after
the autoencoder expansion. PCA provides another
method for visualizing the embedding space. The
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Figure 2: UMAP Projection of Initial BERT Embeddings Showing Clustering.

raw OpenAI embeddings show no structure, while the
post-autoencoder embeddings reveal clear structure.

4.3 Comparison of Progressive vs
Standard Training Loss Curves

This figure shows the training loss curves for progres-
sive training (with and without shuffling) compared
to standard training. It highlights how progressive
training prevents overfitting and leads to better long-
term convergence, even though it takes longer. Pro-
gressive training was performed to prevent overfit-
ting, as in real-world scenarios like continual learning
or RAG, it’s often impractical to leave out data for
validation, so this method provides confidence that

overfitting is minimized.

4.4 UMAP Visualization Before and
After High-Accuracy Autoen-
coder Training

This figure shows the UMAP projections of the
embedding space before and after training a high-
accuracy autoencoder (trained to ¿95% similarity).
It demonstrates how high-accuracy training expands
the embedding space while maintaining separation
between data points.
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(a) Raw OpenAI Embeddings (PCA) (b) Autoencoder-Expanded Embeddings (PCA)

Figure 3: PCA Projections: Raw OpenAI Embeddings vs Autoencoder-Expanded Embeddings.

(a) Without Random Shuffling (b) With Random Shuffling

Figure 4: Training Loss Curves for Progressive Training vs Standard Training.

4.5 Progressive Training Similarity vs
Loss (Intermediate Stage)

This figure shows the similarity and loss values during
progressive training at an intermediate stage (around
50 epochs). It demonstrates the steady improvement
of the training process and the balanced expansion of
the embedding space without significant loss degra-
dation.

5 Discussion

The experiments produced several key findings that
highlight the importance of expanding embedding
spaces in long-running processes:

• Progressive Training was found to be effective
at expanding the embedding space over time, al-
though it came at the cost of slower convergence
compared to standard methods. Random shuf-
fling further improved the performance of pro-
gressive training.

• Autoencoders successfully dispersed similar
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Figure 5: UMAP Visualization of Embedding Space Before and After High-Accuracy Autoencoder Training.

data points in the embedding space, though fine-
tuning was necessary to avoid introducing noise
into the expanded space.

5.1 Noise and Collapse in Embedding
Spaces: The Role of Progressive
Training

In the context of embedding space expansion, noise
and collapse are two critical concerns. Overfitting
can lead to noise, where the embedding space be-
comes overly complex and starts capturing irrelevant
features, while underfitting leads to collapse, where
the embedding space becomes too diffuse and fails to
distinguish between important data points.

Progressive training was chosen as a method to bal-

ance between overfitting and underfitting. By in-
crementally increasing the training dataset size and
shuffling the data at each stage, progressive training
ensures that the model does not become overly spe-
cialized on any subset of data, thus preventing over-
fitting and the resulting noise. At the same time,
it prevents collapse by ensuring that the model is
trained on an expanding dataset, allowing the em-
bedding space to grow and adapt to new information
without losing important distinctions.

This approach is particularly important in real-world
scenarios like continual learning and RAG, where it
is often impractical to leave out data for validation.
Progressive training provides a mechanism that al-
lows the model to grow its knowledge base without
overfitting, maintaining the quality of the embedding
space and ensuring that it continues to serve its in-
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Figure 6: Similarity and Loss Curves at Epoch 50 in Progressive Autoencoder Training.

tended purpose over time.

6 Conclusion

This research demonstrates that methods such as au-
toencoders and progressive training can successfully
expand the embedding space for highly similar text
data, as evidenced by the experiments conducted on
the Critical Role Dataset (CRD3). The ability to ex-
pand the embedding space is directly correlated with
the needs of continual learning in LLM agents, which
must store and adapt information over time. Without
this expansion, non-continual learning models like
RAG fail to maintain the separation and structure
required for long-term processing of highly similar
data.

Future work will focus on taking the lessons learned
from embedding space expansion and applying them
to continual learning LLM agents. This will allow the
development of more sophisticated models that can
manage long-running tasks in dynamic environments
without succumbing to overlapping information or re-
trieval errors.
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