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Abstract

This paper investigates the relationship between text generation hy-
perparameterstemperature, top_p, sequence length, and token lengthand
their influence on the output diversity across thousands of inferences of
a single prompt: ”You are a time traveler in the year 10,000, describe
what you see.” The prompt was chosen for its open-ended nature, which
allows a wide range of possible responses. Initial analysis reveals weak
correlations between these hyperparameters and the generated outputs.
Higher temperatures tend to produce incoherent or nonsensical outputs,
while top_p and sequence length have more subtle influences. The study
also introduces an initial attempt to expand the embedding space to look
for more predictive abilities.

A novel Progressive Data Increment Method was employed due to
its property of preventing overfitting and improving training stability, as
demonstrated in Figure 6. This method allowed models to progressively
train on increasing datasets, stabilizing validation loss while predicting
temperature and top_p. Despite these efforts, the outputs remain too
similar, offering only minimal predictive capability for the hyperparam-
eters. However, there is potential in further expanding the embedding
space to uncover hidden patterns.

1 Introduction

Large Language Models (LLMs) such as GPT-3.5-turbo, GPT-40, and Llama3-
7B utilize sampling hyperparameters like temperature, top_p, sequence length,
and token length to influence the diversity and randomness of their outputs.
Temperature controls the smoothness of the probability distribution from which
tokens are sampled, while top_p restricts the token sampling to a cumulative
probability mass. Sequence length and token length, which were also varied in
this study, control the maximum number of tokens generated in a response and
can influence the coherence and completeness of the output.

This study aims to examine whether these hyperparameters lead to observ-
able differences in generated outputs, specifically through the lens of embed-



ding and visualization techniques. By exploring weak correlations and testing

advanced embedding and training methods, the objective is to identify patterns

that could guide strategies for optimizing LLM performance in complex tasks.
The open-ended prompt used for this study was:

"You are a time traveler in the year 10,000, describe what you see.”

This prompt was chosen because of its potential to generate a wide variety
of responses, allowing for a rich analysis of how temperature, top_p, sequence
length, and token length influence the generation process.

2 Methodology

2.1 Data Generation

Thousands of responses were generated to the aforementioned prompt, system-
atically varying temperature, top_p, sequence length, and token length. Re-
sponses were generated using three different models: GPT-3.5-turbo, GPT-4o,
and Llama3-7B. This multi-model approach ensured a more comprehensive anal-
ysis by examining the impact of model architecture in addition to hyperparam-
eters.

2.2 Embedding Methods

The responses were embedded using OpenAls embedding model. Initially, BERT-
based embeddings were explored for the task, but they did not provide the
resolution required for identifying meaningful separations in the output space.
OpenAl embeddings were thus chosen for their superior clustering and differen-
tiation capability, making them more suitable for this analysis.

2.3 Visualization and Correlation Analysis

Dimensionality reduction was performed using UMAP (Uniform Manifold Ap-
proximation and Projection) to visualize how the responses cluster according
to the hyperparameters, including temperature, top_p, sequence length, and to-
ken length. Correlation matrices were also generated to quantify relationships
between UMAP dimensions and the various hyperparameters.

Finally, an autoencoder was trained to predict temperature, top_p, sequence
length, and token length from the embeddings, and to explore the embeddings’
potential for clustering and correlation.



3 Results and Analysis

3.1 UMAP Visualizations of Sequences and Hyperparam-
eters

The relationship between the generated sequences and the hyperparameters was
first visualized using UMAP. As shown in Figure 1, the expectation was to see
distinct clusters corresponding to varying values of temperature, top_p, and
sequence length. However, the results indicate weak correlations between the
embeddings and these hyperparameters, with no strong separations apparent in
the sequence visualizations.
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Figure 1: UMAP Visualizations of Sequence vs Top_p and Temperature. The
visualizations show weak correlations between the generated sequences and hy-
perparameters.



The lack of clear clusters in these visualizations led to further investiga-
tion using correlation matrices and autoencoders to quantify the relationships
between the embeddings and the hyperparameters.

3.2 Correlation Matrices and UMAP Embeddings

To further analyze the weak correlations, correlation matrices were computed
between UMAP dimensions and the hyperparameters (temperature, top_p, se-
quence length, token length). As shown in Figure 2, while some relationships
between temperature and top_p exist, they are not strong enough to yield dis-
tinctive clustering.
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Figure 2: UMAP Embedding and Correlation Matrix for Temperature and
Top_p. The correlations between hyperparameters and embeddings are weak.

The matrices confirm that temperature, top_p, and sequence length exert
only weak influences on the structure of the embeddings. The impact of model
architecture on clustering was subsequently explored.



3.3 Cluster Analysis by Model

Clustering analysis based on model architecture was performed to determine if
the differences in architecture (GPT-3.5-turbo, GPT-40, and Llama3-7B) cre-
ated more significant separations in the embeddings. As seen in Figure 3, model
architecture played a greater role in clustering than hyperparameters, suggest-
ing that the choice of model has a more pronounced effect on the generated
outputs.

Figure 3: Cluster Visualization by Model: GPT-3.5-turbo, GPT-40, and
Llama3-7B. Model architecture has a greater impact on clustering than tem-
perature, top_p, and sequence length.

The fact that model architecture creates more noticeable separations than
temperature, top_p, or sequence length supports the idea that these hyperpa-
rameters alone are not sufficient to guide meaningful clustering.

3.4 Autoencoder Predictions of Temperature, Top_p, and
Sequence Length

An autoencoder was trained to predict temperature, top_p, and sequence length
from the embeddings. As seen in Figure 4, while the autoencoder was able to
weakly predict the values, the predictions were often inaccurate, particularly for
outliers.

The weak predictions suggest that certain outputs cannot be easily mapped
to their corresponding temperature, top_p, or sequence length values, indicating
that these hyperparameters may not have a consistent impact on the output
structure.

3.5 Autoencoder Results: Reproducing Embeddings

The autoencoder was also trained to reproduce the embeddings themselves in
an attempt to see if the model could learn to cluster the data based on the
underlying structure. As shown in Figure 5, the model exhibited a weak ability
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Figure 4: Autoencoder Predictions of Temperature and Top_p, showing weak
correlation between the actual values and predictions. Many outliers were un-
predictable.

to separate the embeddings into clusters, but the clusters were not distinct
enough to be practically useful.
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Figure 5: Autoencoder Training to Reproduce Embeddings, showing weak clus-
tering of the data based on some underlying structure.

Although there is potential in using autoencoders to identify latent struc-
tures, the results show that the current embedding space does not allow for
strong separations based on the hyperparameters.

3.6 Training Loss Comparison: Standard vs Progressive
Data Increment

Finally, a comparison was made between standard training methods and the
Progressive Data Increment Method. As demonstrated in Figure 6, the Progres-
sive Data Increment Method stabilized the loss curve and reduced overfitting,
improving generalization in the model’s predictions.

The Progressive Data Increment Method’s ability to maintain low training
and validation loss suggests it is a promising technique for training large models
on complex data without overfitting.
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Figure 6: Training and Validation Loss: Standard vs Progressive Data Incre-
ment. The progressive method prevents overfitting and improves generalization.

4 Discussion

The results from this study present several key insights. First, temperature,
top_p, sequence length, and token length produce only weak correlations in the
embedding space, as confirmed by UMAP visualizations, correlation matrices,
and the inability of the autoencoder to strongly predict these values. This con-
tradicts the theoretical assumption that varying these hyperparameters would
lead to clear structural differences in the outputs.

Second, model architecture has a much more pronounced effect on clustering
than temperature, top_p, or sequence length. The outputs generated by different
models, such as GPT-40 and Llama3-7B, showed clearer separations, implying
that the models underlying structure is more influential in determining the
variability of output responses.

Finally, the Progressive Data Increment Method offered a significant im-
provement in generalization, preventing overfitting even with larger data sets.
This method shows potential for training models on progressively increasing
data sizes.

5 Conclusion and Future Work

This study sought to identify correlations between temperature, top_p, sequence
length, token length, and text output in large language models. While weak
correlations were found, particularly with higher temperatures producing inco-
herent outputs, the overall effect of these hyperparameters on the embedding
space was minimal. The models’ architecture had a far greater impact on output
variability.
Autoencoders showed some potential in weakly predicting temperature, top_p,

and sequence length values and in clustering data based on embeddings, but fur-
ther improvements are needed to uncover stronger correlations. Future work will



focus on expanding the embedding space and exploring more advanced models
to identify latent structures in generated text.



